Environmental Analysis through integration of Geographical Information and Machine Vision systems

by

Paul D. Kelly, M.Eng.

A thesis presented on application for the degree of

DOCTOR OF PHILOSOPHY

Faculty of Engineering

The Queen’s University of Belfast

School of Electrical & Electronic Engineering,

May 2004.
Abstract

A system for geo-referencing objects in general environmental scenes is presented. Specific attention is given to the application of change detection over time.

A commercial digital video camera is used for image acquisition and the requirements for using it for accurate photogrammetric measurements are thoroughly investigated. Methods are developed to compensate for pixel size and lens distortion.

Sources of the necessary geographical data for geo-referencing, as applied to Northern Ireland are analysed and their accuracy quantified with respect to each other. Appropriate data sources are combined to produce the most suitable and accurate data. An existing Geographical Information System (GIS) is further developed to improve its suitability for the necessary geographical analysis and processing.

The 3-D visualisation capabilities of a GIS have been extended to allow it to be used for image perspective transformation in non-flat scenes. The physical properties and known position of the camera are used to relate the geographical data to the camera image of the same scene.

A system design for accurately determining the camera position is developed, making use of GPS and inertial sensors for an initial approximation and a novel image feature-based technique to improve accuracy. Initial results are demonstrated to prove the potential of the method.

Methods of change detection and its pre-requisites (illumination and colour compensation) are demonstrated to be appropriate for the types of images and scenes under consideration.

Images and data from urban and rural scenes are used to demonstrate the effectiveness of the various aspects of the system. Suggestions for further work include further development of the system and application of several aspects of the work to other systems.
Contents

1 Introduction

1.1 Types of Vision-based Analysis .. 1
1.2 Data Structure for Objective Change Description 2
1.3 Existing Methods of Change and Feature Analysis 2
1.4 Scope for Application of New Methods 4
1.5 State of Current Research (Literature Review) 5
 1.5.1 Camera / video image acquisition and initial processing 5
 1.5.2 Geographical data sources and GIS 7
 1.5.3 3-D visualisation and image perspective transformation 9
 1.5.4 Accurate position and orientation measurement 12
 1.5.5 Illumination and Colour ... 14
 1.5.6 Change detection ... 19
1.6 Thesis and Scope .. 19
 1.6.1 Thesis focal theory ... 20
 1.6.2 Scope .. 20
1.7 Layout .. 21

2 Camera / Video Image Acquisition and Initial Processing 22

2.1 Camera Selection ... 22
2.2 Image Capture .. 23
2.3 Pixel Aspect Correction ... 25
2.4 Distortion Correction .. 30
 2.4.1 Pixel correction algorithm ... 30
 2.4.2 Experimental determination of distortion parameters 31
 2.4.3 Practical application of distortion correction 38
 2.4.4 Comparison of results ... 40
 2.4.5 Application of distortion correction—conclusions 42
 2.4.6 Look-up table implementation of reverse mapping and bi-linear interpolation .. 43
2.5 Pixel Values, Illuminance and Colour 44
Contents

5 Accurate Position and Orientation Measurement

5.1 Position Measurement for a Mobile System .. 93
 5.1.1 Types of mobile system .. 93
 5.1.2 Sensor requirements ... 94
 5.1.3 Modified hough transform for ground-level images 95
 5.1.4 Proposed system ... 96

5.2 Position Estimation Experimental Results 97
 5.2.1 Co-ordinate reference system 98
 5.2.2 GPS data processing .. 98
 5.2.3 YPR sensor data processing .. 101
 5.2.4 Fusion of GPS, YPR and video data 102
 5.2.5 Comparison with low resolution GPS 103
 5.2.6 Application of modified hough transform to ground-level images 104

5.3 Conclusions ... 105

6 Vector and Raster Change Detection

6.1 Illumination and Colour Considerations 106
 6.1.1 Measurement of illumination from the sun 107
 6.1.2 Object spectral reflectance and colour 108

6.2 Describing Change .. 109
 6.2.1 Change detection in aerial images 109
 6.2.2 Advantages of augmentation by ground-level images 109
 6.2.3 Processing ground-level images 111
 6.2.4 Changed areas and objects in 2-D image space 111

6.3 Illumination Effects and Calibration 113
 6.3.1 Illumination measurement .. 113
 6.3.2 Image correction for illumination effects 114

6.4 Colour Processing ... 119
 6.4.1 Linear hue representation .. 120

6.5 Feature Identification and Change Detection 124
 6.5.1 Evaluation of existing methods for aerial images 124
 6.5.2 Segmentation of ground-level images 130
 6.5.3 GIS-assisted segmentation and identification 132

6.6 Conclusions ... 136

7 Concluding Summary and Future Work

7.1 Contribution ... 137

7.2 Limitations and Future Work ... 138
 7.2.1 Chapter 2 .. 139
 7.2.2 Chapter 3 .. 139
Contents

7.2.3 Chapter 4 ... 140
7.2.4 Chapter 5 ... 140
7.2.5 Chapter 6 ... 140
7.3 Complete Structure of data and processing for future Change Detection 141

A Algorithms for Image Pre-processing 143
A.1 Square Pixel Correction .. 143
A.2 Distortion Measurement .. 144
A.3 Distortion Correction ... 152

B Geographical Information Processing 153
B.1 OSNI Vector data import .. 153
B.2 OSNI Raster DTM Import 154
B.3 Combined DEM .. 156

C 3-D Visualisation in the GRASS GIS 157
C.1 Line-of-sight ‘viewable wedge’ creation 157
C.2 SG3d Modifications ... 157
C.3 Co-ordinate dump file manipulation 161
C.4 Improvements to s.surf.idw 162

D Position Estimation 171
D.1 GAMIT track module kinematic GPS operation 171
D.2 Tokin YPR Sensor software modifications 172
D.3 Modified Hough Transform 174

E Colour and Illumination 179
E.1 Flattened Hue .. 179
List of Acronyms

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

CIE Commission Internationale de l’Eclairage (international colour standards body)

DEM Digital Elevation Model

DTM Digital Terrain Model

DV Digital Video

GAMIT GPS Analysis—Massachusetts Institute of Technology

GIS Geographical Information System

GPS Global Positioning System

GRASS Geographic Resources Analysis Support System

IDW Inverse Distance Weighting (interpolation method)

MHT Modified Hough Transform

MSL Mean Sea Level

OSGM02 Ordnance Survey Geoid Model 2002

OSNI Ordnance Survey of Northern Ireland

OSi Ordnance Survey Ireland

PAL Phase Alternate Line (European television standard)

RINEX Receiver INdependent EXchange format (GPS data storage format)

RMS Root Mean Square

RST Regularised Spline with Tension (interpolation method)

UTM Universal Transverse Mercator (map projection ASTER data is supplied in)

WGS84 World Geodetic System 1984 (geodetic datum and Earth ellipsoid model)
Publications

Parts of the work presented in this thesis have already been published elsewhere as follows:
